Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Clin Infect Dis ; 76(10): 1822-1831, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20236763

ABSTRACT

BACKGROUND: Data on antibody kinetics are limited among individuals previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). From a cohort of healthcare personnel and other frontline workers in 6 US states, we assessed antibody waning after messenger RNA (mRNA) dose 2 and response to dose 3 according to SARS-CoV-2 infection history. METHODS: Participants submitted sera every 3 months, after SARS-CoV-2 infection, and after each mRNA vaccine dose. Sera were tested for antibodies and reported as area under the serial dilution curve (AUC). Changes in AUC values over time were compared using a linear mixed model. RESULTS: Analysis included 388 participants who received dose 3 by November 2021. There were 3 comparison groups: vaccine only with no known prior SARS-CoV-2 infection (n = 224); infection prior to dose 1 (n = 123); and infection after dose 2 and before dose 3 (n = 41). The interval from dose 2 and dose 3 was approximately 8 months. After dose 3, antibody levels rose 2.5-fold (95% confidence interval [CI] = 2.2-3.0) in group 2 and 2.9-fold (95% CI = 2.6-3.3) in group 1. Those infected within 90 days before dose 3 (and median 233 days [interquartile range, 213-246] after dose 2) did not increase significantly after dose 3. CONCLUSIONS: A third dose of mRNA vaccine typically elicited a robust humoral immune response among those with primary vaccination regardless of SARS-CoV-2 infection >3 months prior to boosting. Those with infection <3 months prior to boosting did not have a significant increase in antibody concentrations in response to a booster.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , RNA, Messenger , mRNA Vaccines , Antibodies, Viral
2.
BMC Infect Dis ; 23(1): 374, 2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20234767

ABSTRACT

BACKGROUND: University students commonly received COVID-19 vaccinations before returning to U.S. campuses in the Fall of 2021. Given likely immunologic variation among students based on differences in type of primary series and/or booster dose vaccine received, we conducted serologic investigations in September and December 2021 on a large university campus in Wisconsin to assess anti-SARS-CoV-2 antibody levels. METHODS: We collected blood samples, demographic information, and COVID-19 illness and vaccination history from a convenience sample of students. Sera were analyzed for both anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody levels using World Health Organization standardized binding antibody units per milliliter (BAU/mL). Levels were compared across categorical primary COVID-19 vaccine series received and binary COVID-19 mRNA booster status. The association between anti-S levels and time since most recent vaccination dose was estimated by mixed-effects linear regression. RESULTS: In total, 356 students participated, of whom 219 (61.5%) had received a primary vaccine series of Pfizer-BioNTech or Moderna mRNA vaccines and 85 (23.9%) had received vaccines from Sinovac or Sinopharm. Median anti-S levels were significantly higher for mRNA primary vaccine series recipients (2.90 and 2.86 log [BAU/mL], respectively), compared with those who received Sinopharm or Sinovac vaccines (1.63 and 1.95 log [BAU/mL], respectively). Sinopharm and Sinovac vaccine recipients were associated with a significantly faster anti-S decline over time, compared with mRNA vaccine recipients (P <.001). By December, 48/172 (27.9%) participants reported receiving an mRNA COVID-19 vaccine booster, which reduced the anti-S antibody discrepancies between primary series vaccine types. CONCLUSIONS: Our work supports the benefit of heterologous boosting against COVID-19. COVID-19 mRNA vaccine booster doses were associated with increases in anti-SARS-CoV-2 antibody levels; following an mRNA booster dose, students with both mRNA and non-mRNA primary series receipt were associated with comparable levels of anti-S IgG.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Wisconsin/epidemiology , Universities , Antibodies, Viral , RNA, Messenger
3.
Influenza Other Respir Viruses ; 17(5): e13143, 2023 05.
Article in English | MEDLINE | ID: covidwho-20231202

ABSTRACT

BACKGROUND: We estimated combined protection conferred by prior SARS-CoV-2 infection and COVID-19 vaccination against COVID-19-associated acute respiratory illness (ARI). METHODS: During SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variant circulation between October 2021 and April 2022, prospectively enrolled adult patients with outpatient ARI had respiratory and filter paper blood specimens collected for SARS-CoV-2 molecular testing and serology. Dried blood spots were tested for immunoglobulin-G antibodies against SARS-CoV-2 nucleocapsid (NP) and spike protein receptor binding domain antigen using a validated multiplex bead assay. Evidence of prior SARS-CoV-2 infection also included documented or self-reported laboratory-confirmed COVID-19. We used documented COVID-19 vaccination status to estimate vaccine effectiveness (VE) by multivariable logistic regression by prior infection status. RESULTS: Four hundred fifty-five (29%) of 1577 participants tested positive for SARS-CoV-2 infection at enrollment; 209 (46%) case-patients and 637 (57%) test-negative patients were NP seropositive, had documented previous laboratory-confirmed COVID-19, or self-reported prior infection. Among previously uninfected patients, three-dose VE was 97% (95% confidence interval [CI], 60%-99%) against Delta, but not statistically significant against Omicron. Among previously infected patients, three-dose VE was 57% (CI, 20%-76%) against Omicron; VE against Delta could not be estimated. CONCLUSIONS: Three mRNA COVID-19 vaccine doses provided additional protection against SARS-CoV-2 Omicron variant-associated illness among previously infected participants.


Subject(s)
COVID-19 , Influenza Vaccines , Adult , Humans , COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Outpatients , Vaccine Efficacy
4.
Open Forum Infect Dis ; 10(5): ofad168, 2023 May.
Article in English | MEDLINE | ID: covidwho-2322657

ABSTRACT

Background: We compared postinfection severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (nAb) responses among children and adults while the D614G-like strain and Alpha, Iota, and Delta variants circulated. Methods: During August 2020-October 2021, households with adults and children were enrolled and followed in Utah, New York City, and Maryland. Participants collected weekly respiratory swabs that were tested for SARS-CoV-2 and had sera collected during enrollment and follow-up. Sera were tested for SARS-CoV-2 nAb by pseudovirus assay. Postinfection titers were characterized with biexponential decay models. Results: Eighty participants had SARS-CoV-2 infection during the study (47 with D614G-like virus, 17 with B.1.1.7, and 8 each with B.1.617.2 and B.1.526 virus). Homologous nAb geometric mean titers (GMTs) trended higher in adults (GMT = 2320) versus children 0-4 (GMT = 425, P = .33) and 5-17 years (GMT = 396, P = .31) at 1-5 weeks postinfection but were similar from 6 weeks. Timing of peak titers was similar by age. Results were consistent when participants with self-reported infection before enrollment were included (n = 178). Conclusions: The SARS-CoV-2 nAb titers differed in children compared to adults early after infection but were similar by 6 weeks postinfection. If postvaccination nAb kinetics have similar trends, vaccine immunobridging studies may need to compare nAb responses in adults and children 6 weeks or more after vaccination.

5.
Infect Control Hosp Epidemiol ; : 1-4, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-2327088

ABSTRACT

One in six nursing home residents and staff with positive SARS-CoV-2 tests ≥90 days after initial infection had specimen cycle thresholds (Ct) <30. Individuals with specimen Ct<30 were more likely to report symptoms but were not different from individuals with high Ct value specimens by other clinical and testing data.

6.
Open Forum Infect Dis ; 10(5): ofad204, 2023 May.
Article in English | MEDLINE | ID: covidwho-2313971

ABSTRACT

Background: Early coronavirus disease 2019 (COVID-19) vaccine trials excluded pregnant women, resulting in limited data about immunogenicity and maternal-fetal antibody transfer, particularly by gestational timing of vaccination. Methods: In this multicenter observational immunogenicity study, pregnant and nonpregnant women receiving COVID-19 vaccines were prospectively enrolled. Participants had sera collected before vaccination, at 14-28 days after each vaccine dose, at delivery (umbilical cord and peripheral), and from their infants at 3 and 6 months. Geometric mean titers (GMTs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ID50 neutralizing antibody (nAb) against D614G-like viruses were compared by participant characteristics. Results: Overall, 23 nonpregnant and 85 pregnant participants (trimester of first vaccine dose: 10 first, 47 second, 28 third) were enrolled. Ninety-three percent (76/82 with blood samples) of pregnant participants had detectable SARS-CoV-2 nAb after 2 vaccine doses, but GMTs (95% confidence intervals) were lower in pregnant participants than nonpregnant participants (1722 [1136-2612] vs 4419 [2012-9703]; P = .04). By 3 and 6 months, 28% and 74% of infants, respectively, of vaccinated participants had no detectable nAb to D614G-like viruses. Among the 71 pregnant participants without detectable nAb before vaccination, cord blood GMTs at delivery were 5-fold higher among participants vaccinated during the third versus first trimester, and cord blood nAb titers appeared inversely correlated with weeks since first vaccine dose (R2 = 0.06, P = .06). Conclusions: Though most pregnant women develop nAb after 2 doses of mRNA COVID-19 vaccines, this analysis suggests that infant protection from maternal vaccination varies by gestational timing of vaccination and wanes. Additional prevention strategies such as caregiver vaccination may warrant consideration to optimize infant protection.

7.
MMWR Morb Mortal Wkly Rep ; 72(19): 523-528, 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2319324

ABSTRACT

On January 31, 2020, the U.S. Department of Health and Human Services (HHS) declared, under Section 319 of the Public Health Service Act, a U.S. public health emergency because of the emergence of a novel virus, SARS-CoV-2.* After 13 renewals, the public health emergency will expire on May 11, 2023. Authorizations to collect certain public health data will expire on that date as well. Monitoring the impact of COVID-19 and the effectiveness of prevention and control strategies remains a public health priority, and a number of surveillance indicators have been identified to facilitate ongoing monitoring. After expiration of the public health emergency, COVID-19-associated hospital admission levels will be the primary indicator of COVID-19 trends to help guide community and personal decisions related to risk and prevention behaviors; the percentage of COVID-19-associated deaths among all reported deaths, based on provisional death certificate data, will be the primary indicator used to monitor COVID-19 mortality. Emergency department (ED) visits with a COVID-19 diagnosis and the percentage of positive SARS-CoV-2 test results, derived from an established sentinel network, will help detect early changes in trends. National genomic surveillance will continue to be used to estimate SARS-CoV-2 variant proportions; wastewater surveillance and traveler-based genomic surveillance will also continue to be used to monitor SARS-CoV-2 variants. Disease severity and hospitalization-related outcomes are monitored via sentinel surveillance and large health care databases. Monitoring of COVID-19 vaccination coverage, vaccine effectiveness (VE), and vaccine safety will also continue. Integrated strategies for surveillance of COVID-19 and other respiratory viruses can further guide prevention efforts. COVID-19-associated hospitalizations and deaths are largely preventable through receipt of updated vaccines and timely administration of therapeutics (1-4).


Subject(s)
COVID-19 , Sentinel Surveillance , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Public Health , SARS-CoV-2 , United States/epidemiology , Wastewater-Based Epidemiological Monitoring
8.
Open Forum Infect Dis ; 10(3): ofad091, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2261547

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests have had limited recommended clinical application during the coronavirus disease 2019 (COVID-19) pandemic. To inform clinical practice, an understanding is needed of current perspectives of United States-based infectious disease (ID) physicians on the use, interpretation, and need for SARS-CoV-2 antibody tests. Methods: In March 2022, members of the Emerging Infections Network (EIN), a national network of practicing ID physicians, were surveyed on types of SARS-CoV-2 antibody assays ordered, interpretation of test results, and clinical scenarios for which antibody tests were considered. Results: Of 1867 active EIN members, 747 (40%) responded. Among the 583 who managed or consulted on COVID-19 patients, a majority (434/583 [75%]) had ordered SARS-CoV-2 antibody tests and were comfortable interpreting positive (452/578 [78%]) and negative (405/562 [72%]) results. Antibody tests were used for diagnosing post-COVID-19 conditions (61%), identifying prior SARS-CoV-2 infection (60%), and differentiating prior infection and response to COVID-19 vaccination (37%). Less than a third of respondents had used antibody tests to assess need for additional vaccines or risk stratification. Lack of sufficient evidence for use and nonstandardized assays were among the most common barriers for ordering tests. Respondents indicated that statements from professional societies and government agencies would influence their decision to order SARS-CoV-2 antibody tests for clinical decision making. Conclusions: Practicing ID physicians are using SARS-CoV-2 antibody tests, and there is an unmet need for clarifying the appropriate use of these tests in clinical practice. Professional societies and US government agencies can support clinicians in the community through the creation of appropriate guidance.

9.
J Infect Dis ; 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2257228

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by RT-qPCR in specimens from 3,204 individuals hospitalized with COVID-19 at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Ct values at presentation for N (mean ±standard deviation) were 24.14±4.53 for non-variants of concern, 25.15±4.33 for Alpha, 25.31±4.50 for Delta, and 26.26±4.42 for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements adds little information for the purposes of estimating infectivity.

10.
MMWR Morb Mortal Wkly Rep ; 72(5): 125-127, 2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2226325

ABSTRACT

Monitoring emerging SARS-CoV-2 lineages and their epidemiologic characteristics helps to inform public health decisions regarding vaccine policy, the use of therapeutics, and health care capacity. When the SARS-CoV-2 Alpha variant emerged in late 2020, a spike gene (S-gene) deletion (Δ69-70) in the N-terminal region, which might compensate for immune escape mutations that impair infectivity (1), resulted in reduced or failed S-gene target amplification in certain multitarget reverse transcription-polymerase chain reaction (RT-PCR) assays, a pattern referred to as S-gene target failure (SGTF) (2). The predominant U.S. SARS-CoV-2 lineages have generally alternated between SGTF and S-gene target presence (SGTP), which alongside genomic sequencing, has facilitated early monitoring of emerging variants. During a period when Omicron BA.5-related sublineages (which exhibit SGTF) predominated, an XBB.1.5 sublineage with SGTP has rapidly expanded in the northeastern United States and other regions.


Subject(s)
COVID-19 , Public Health , United States/epidemiology , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Mutation , COVID-19 Testing
11.
Lancet regional health Americas ; 18:100403-100403, 2022.
Article in English | EuropePMC | ID: covidwho-2147777

ABSTRACT

Background Sero-surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reveal trends and differences in subgroups and capture undetected or unreported infections that are not included in case-based surveillance systems. Methods Cross-sectional, convenience samples of remnant sera from clinical laboratories from 51 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies biweekly from October 25, 2020, to July 11, 2021, and monthly from September 6, 2021, to February 26, 2022. Test results were analyzed for trends in infection-induced, nucleocapsid-protein seroprevalence using mixed effects models that adjusted for demographic variables and assay type. Findings Analyses of 1,469,792 serum specimens revealed U.S. infection-induced SARS-CoV-2 seroprevalence increased from 8.0% (95% confidence interval (CI): 7.9%–8.1%) in November 2020 to 58.2% (CI: 57.4%–58.9%) in February 2022. The U.S. ratio of the change in estimated seroprevalence to the change in reported case prevalence was 2.8 (CI: 2.8–2.9) during winter 2020–2021, 2.3 (CI: 2.0–2.5) during summer 2021, and 3.1 (CI: 3.0–3.3) during winter 2021–2022. Change in seroprevalence to change in case prevalence ratios ranged from 2.6 (CI: 2.3–2.8) to 3.5 (CI: 3.3–3.7) by region in winter 2021–2022. Interpretation Ratios of the change in seroprevalence to the change in case prevalence suggest a high proportion of infections were not detected by case-based surveillance during periods of increased transmission. The largest increases in the seroprevalence to case prevalence ratios coincided with the spread of the B.1.1.529 (Omicron) variant and with increased accessibility of home testing. Ratios varied by region and season with the highest ratios in the midwestern and southern United States during winter 2021–2022. Our results demonstrate that reported case counts did not fully capture differing underlying infection rates and demonstrate the value of sero-surveillance in understanding the full burden of infection. Levels of infection-induced antibody seroprevalence, particularly spikes during periods of increased transmission, are important to contextualize vaccine effectiveness data as the susceptibility to infection of the U.S. population changes. Funding This work was supported by the 10.13039/100000030Centers for Disease Control and Prevention, Atlanta, Georgia.

12.
Virol J ; 19(1): 202, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2153609

ABSTRACT

BACKGROUND: The objective of our investigation was to better understand barriers to implementation of self-administered antigen screening testing for SARS-CoV-2 at institutions of higher education (IHE). METHODS: Using the Quidel QuickVue At-Home COVID-19 Test, 1347 IHE students and staff were asked to test twice weekly for seven weeks. We assessed seroconversion using baseline and endline serum specimens. Online surveys assessed acceptability. RESULTS: Participants reported 9971 self-administered antigen test results. Among participants who were not antibody positive at baseline, the median number of tests reported was eight. Among 324 participants seronegative at baseline, with endline antibody results and ≥ 1 self-administered antigen test results, there were five COVID-19 infections; only one was detected by self-administered antigen test (sensitivity = 20%). Acceptability of self-administered antigen tests was high. CONCLUSIONS: Twice-weekly serial self-administered antigen testing in a low prevalence period had low utility in this investigation. Issues of testing fatigue will be important to address in future testing strategies.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Students , Immunologic Tests , Seroconversion
13.
Lancet Reg Health Am ; 18: 100403, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2131781

ABSTRACT

Background: Sero-surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reveal trends and differences in subgroups and capture undetected or unreported infections that are not included in case-based surveillance systems. Methods: Cross-sectional, convenience samples of remnant sera from clinical laboratories from 51 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies biweekly from October 25, 2020, to July 11, 2021, and monthly from September 6, 2021, to February 26, 2022. Test results were analyzed for trends in infection-induced, nucleocapsid-protein seroprevalence using mixed effects models that adjusted for demographic variables and assay type. Findings: Analyses of 1,469,792 serum specimens revealed U.S. infection-induced SARS-CoV-2 seroprevalence increased from 8.0% (95% confidence interval (CI): 7.9%-8.1%) in November 2020 to 58.2% (CI: 57.4%-58.9%) in February 2022. The U.S. ratio of the change in estimated seroprevalence to the change in reported case prevalence was 2.8 (CI: 2.8-2.9) during winter 2020-2021, 2.3 (CI: 2.0-2.5) during summer 2021, and 3.1 (CI: 3.0-3.3) during winter 2021-2022. Change in seroprevalence to change in case prevalence ratios ranged from 2.6 (CI: 2.3-2.8) to 3.5 (CI: 3.3-3.7) by region in winter 2021-2022. Interpretation: Ratios of the change in seroprevalence to the change in case prevalence suggest a high proportion of infections were not detected by case-based surveillance during periods of increased transmission. The largest increases in the seroprevalence to case prevalence ratios coincided with the spread of the B.1.1.529 (Omicron) variant and with increased accessibility of home testing. Ratios varied by region and season with the highest ratios in the midwestern and southern United States during winter 2021-2022. Our results demonstrate that reported case counts did not fully capture differing underlying infection rates and demonstrate the value of sero-surveillance in understanding the full burden of infection. Levels of infection-induced antibody seroprevalence, particularly spikes during periods of increased transmission, are important to contextualize vaccine effectiveness data as the susceptibility to infection of the U.S. population changes. Funding: This work was supported by the Centers for Disease Control and Prevention, Atlanta, Georgia.

14.
Clin Infect Dis ; 75(10): 1698-1705, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2116480

ABSTRACT

The novel coronavirus pandemic incited unprecedented demand for assays that detect viral nucleic acids, viral proteins, and corresponding antibodies. The 320 molecular diagnostics in receipt of US Food and Drug Administration emergency use authorization mainly focus on viral detection; however, no currently approved test can be used to infer infectiousness, that is, the presence of replicable virus. As the number of tests conducted increased, persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity by reverse-transcription polymerase chain reaction (RT-PCR) in some individuals led to concerns over quarantine guidelines. To this end, we attempted to design an assay that reduces the frequency of positive test results from individuals who do not shed culturable virus. We describe multiplex quantitative RT-PCR assays that detect genomic RNA (gRNA) and subgenomic RNA (sgRNA) species of SARS-CoV-2, including spike, nucleocapsid, membrane, envelope, and ORF8. Viral RNA abundances calculated from these assays were compared with antigen presence, self-reported symptoms, and culture outcome (virus isolation) using samples from a 14-day longitudinal household transmission study. By characterizing the clinical and molecular dynamics of infection, we show that sgRNA detection has higher predictive value for culture outcome compared to detection of gRNA alone. Our findings suggest that sgRNA presence correlates with active infection and may help identify individuals shedding culturable virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Self Report , Longitudinal Studies , RNA, Guide, Kinetoplastida , COVID-19/diagnosis
15.
J Clin Microbiol ; 60(1): e0174221, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-2097916

ABSTRACT

Point-of-care antigen tests are an important tool for SARS-CoV-2 detection. Antigen tests are less sensitive than real-time reverse transcriptase PCR (rRT-PCR). Data on the performance of the BinaxNOW antigen test compared to rRT-PCR and viral culture by symptom and known exposure status, timing during disease, or exposure period and demographic variables are limited. During 3 to 17 November 2020, we collected paired upper respiratory swab specimens to test for SARS-CoV-2 by rRT-PCR and Abbott BinaxNOW antigen test at two community testing sites in Pima County, Arizona. We administered a questionnaire to capture symptoms, known exposure status, and previous SARS-CoV-2 test results. Specimens positive by either test were analyzed by viral culture. Previously we showed overall BinaxNOW sensitivity was 52.5%. Here, we showed BinaxNOW sensitivity increased to 65.7% among currently symptomatic individuals reporting a known exposure. BinaxNOW sensitivity was lower among participants with a known exposure and previously symptomatic (32.4%) or never symptomatic (47.1%) within 14 days of testing. Sensitivity was 71.1% in participants within a week of symptom onset. In participants with a known exposure, sensitivity was highest 8 to 10 days postexposure (75%). The positive predictive value for recovery of virus in cell culture was 56.7% for BinaxNOW-positive and 35.4% for rRT-PCR-positive specimens. Result reporting time was 2.5 h for BinaxNOW and 26 h for rRT-PCR. Point-of-care antigen tests have a shorter turnaround time than laboratory-based nucleic acid amplification tests, which allows for more rapid identification of infected individuals. Antigen test sensitivity limitations are important to consider when developing a testing program.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
16.
PLoS One ; 17(10): e0275718, 2022.
Article in English | MEDLINE | ID: covidwho-2089413

ABSTRACT

There are limited data describing SARS-CoV-2-specific immune responses and their durability following infection and vaccination in nursing home residents. We conducted a prospective longitudinal evaluation of 11 consenting SARS-CoV-2-positive nursing home residents to evaluate the quantitative titers and durability of binding antibodies detected after SARS-CoV-2 infection and subsequent COVID-19 vaccination. The evaluation included nine visits over 150 days from October 25, 2020, through April 1, 2021. Visits included questionnaire administration, blood collection for serology, and paired anterior nasal specimen collection for testing by BinaxNOW™ COVID-19 Ag Card (BinaxNOW), reverse transcription polymerase chain reaction (RT-PCR), and viral culture. We evaluated quantitative titers of binding SARS-CoV-2 antibodies post-infection and post-vaccination (beginning after the first dose of the primary series). The median age among participants was 74 years; one participant was immunocompromised. Of 10 participants with post-infection serology results, 9 (90%) had detectable Pan-Ig, IgG, and IgA antibodies, and 8 (80%) had detectable IgM antibodies. At first antibody detection post-infection, two-thirds (6/9, 67%) of participants were RT-PCR-positive, but none were culture- positive. Ten participants received vaccination; all had detectable Pan-Ig, IgG, and IgA antibodies through their final observation ≤90 days post-first dose. Post-vaccination geometric means of IgG titers were 10-200-fold higher than post-infection. Nursing home residents in this cohort mounted robust immune responses to SARS-CoV-2 post-infection and post-vaccination. The augmented antibody responses post-vaccination are potential indicators of enhanced protection that vaccination may confer on previously infected nursing home residents.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , RNA, Messenger , Georgia , Prospective Studies , Antibodies, Viral , Immunoglobulin A , Nursing Homes , Vaccination , Immunoglobulin G
17.
PLoS One ; 17(10): e0274946, 2022.
Article in English | MEDLINE | ID: covidwho-2065127

ABSTRACT

While risk of fomite transmission of SARS-CoV-2 is considered low, there is limited environmental data within households. This January-April 2021 investigation describes frequency and types of surfaces positive for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) among residences with ≥1 SARS-CoV-2 infection, and associations of household characteristics with surface RT-PCR and viable virus positivity. Of 1232 samples from 124 households, 27.8% (n = 342) were RT-PCR positive with nightstands (44.1%) and pillows (40.9%) most frequently positive. SARS-CoV-2 lineage, documented household transmission, greater number of infected persons, shorter interval between illness onset and sampling, total household symptoms, proportion of infected persons ≤12 years old, and persons exhibiting upper respiratory symptoms or diarrhea were associated with more positive surfaces. Viable virus was isolated from 0.2% (n = 3 samples from one household) of all samples. This investigation suggests that while SARS-CoV-2 on surfaces is common, fomite transmission risk in households is low.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Testing , Child , Colorado , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
18.
BMJ ; 379: e072065, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2064091

ABSTRACT

OBJECTIVE: To compare the effectiveness of a primary covid-19 vaccine series plus booster doses with a primary series alone for the prevention of hospital admission with omicron related covid-19 in the United States. DESIGN: Multicenter observational case-control study with a test negative design. SETTING: Hospitals in 18 US states. PARTICIPANTS: 4760 adults admitted to one of 21 hospitals with acute respiratory symptoms between 26 December 2021 and 30 June 2022, a period when the omicron variant was dominant. Participants included 2385 (50.1%) patients with laboratory confirmed covid-19 (cases) and 2375 (49.9%) patients who tested negative for SARS-CoV-2 (controls). MAIN OUTCOME MEASURES: The main outcome was vaccine effectiveness against hospital admission with covid-19 for a primary series plus booster doses and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. Vaccine effectiveness analyses were stratified by immunosuppression status (immunocompetent, immunocompromised). The primary analysis evaluated all covid-19 vaccine types combined, and secondary analyses evaluated specific vaccine products. RESULTS: Overall, median age of participants was 64 years (interquartile range 52-75 years), 994 (20.8%) were immunocompromised, 85 (1.8%) were vaccinated with a primary series plus two boosters, 1367 (28.7%) with a primary series plus one booster, and 1875 (39.3%) with a primary series alone, and 1433 (30.1%) were unvaccinated. Among immunocompetent participants, vaccine effectiveness for prevention of hospital admission with omicron related covid-19 for a primary series plus two boosters was 63% (95% confidence interval 37% to 78%), a primary series plus one booster was 65% (58% to 71%), and for a primary series alone was 37% (25% to 47%) (P<0.001 for the pooled boosted regimens compared with a primary series alone). Vaccine effectiveness was higher for a boosted regimen than for a primary series alone for both mRNA vaccines (BNT162b2 (Pfizer-BioNTech): 73% (44% to 87%) for primary series plus two boosters, 64% (55% to 72%) for primary series plus one booster, and 36% (21% to 48%) for primary series alone (P<0.001); mRNA-1273 (Moderna): 68% (17% to 88%) for primary series plus two boosters, 65% (55% to 73%) for primary series plus one booster, and 41% (25% to 54%) for primary series alone (P=0.001)). Among immunocompromised patients, vaccine effectiveness for a primary series plus one booster was 69% (31% to 86%) and for a primary series alone was 49% (30% to 63%) (P=0.04). CONCLUSION: During the first six months of 2022 in the US, booster doses of a covid-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing hospital admissions with omicron related covid-19. READERS' NOTE: This article is a living test negative design study that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Hospitals , Humans , Middle Aged , SARS-CoV-2 , United States/epidemiology , Vaccine Efficacy
19.
PloS one ; 17(10), 2022.
Article in English | EuropePMC | ID: covidwho-2058466

ABSTRACT

While risk of fomite transmission of SARS-CoV-2 is considered low, there is limited environmental data within households. This January—April 2021 investigation describes frequency and types of surfaces positive for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) among residences with ≥1 SARS-CoV-2 infection, and associations of household characteristics with surface RT-PCR and viable virus positivity. Of 1232 samples from 124 households, 27.8% (n = 342) were RT-PCR positive with nightstands (44.1%) and pillows (40.9%) most frequently positive. SARS-CoV-2 lineage, documented household transmission, greater number of infected persons, shorter interval between illness onset and sampling, total household symptoms, proportion of infected persons ≤12 years old, and persons exhibiting upper respiratory symptoms or diarrhea were associated with more positive surfaces. Viable virus was isolated from 0.2% (n = 3 samples from one household) of all samples. This investigation suggests that while SARS-CoV-2 on surfaces is common, fomite transmission risk in households is low.

20.
Open Forum Infect Dis ; 9(7): ofac212, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2018026

ABSTRACT

We compared paired serum specimens from household contacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases with detectable SARS-CoV-2 seroconversion with contacts who remained seronegative. No protection from SARS-CoV-2 infection was associated with human coronavirus antibodies; however, an increase in common betacoronavirus antibodies was associated with seroconversion to SARS-CoV-2 in mild to moderately ill cases.

SELECTION OF CITATIONS
SEARCH DETAIL